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HumMan centered ...

Patients suffering from chronic diseases

Frequent check-ups with physician(s)
Determine current state of the patients health
Estimate the trend of the disease

Self-reporting
Diabetes: glucose level, weight, activity, general feeling, ...
CHF: blood pressure, heart rate, weight, activity, fluid intake, general feeling, ...

Lose, forget, to much work, manipulate L \‘— ._L
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Human centered technology

Equipped with devices used in selt-reporting

o
a — — Physician sees raw data
b

N
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Human centered technology

Equipped with devices used in selt-reporting

§> L Aggregated data

Anomaly detection

i) / Raw data

N
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Human centered technology

Lifestyle monitoring and management

Quality of sleep monitoring
Environment monitoring

i Anomaly detection
ce ﬂ: Fall detection
- Visual recognition of skin anomaly — skin cancer, Lyme
) o
Fast unobtrusive diagnosis L\‘_'—L

disease
| FVF
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a Physical activity monitoring
— Mental stress monitoring




Human centered technology

Equipped with devices used in selt-reporting

Fnriched data

Better insight into daily
ving

mproved monitoring and
detection

N
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Artificial Intel

Model and mon
Detect and prec

igence in Mobile Health

Recognition of person’s contexts

itor raw or virtual parameter trends
ict anomalies in patterns

Personalize the

machine-learning models

Aggregate the data in understandable way
Give appropriate recommendations
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"Life is the sum of all your choices.

S0, what are you doing today?”
Albert Camus
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General Contexts
Clues that help us solve a puzzle

Recognize single or multiple current or historical states of
the person

Contexts:

At the office
Prolonged sitting Anticipate leaving around 5 PM

ncreased stress c Anticipate stress relief
| eaves office at 5 PM Anticipate walking a dog around 9PM

How do we do this with machine-learning? L\‘_LL
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State of the person:
Working




Physical Activity Monitoring

Recognize what the person is doing and estimate its intensity

Supervised machine-learning technique | =
4 machine-learning tasks: 3xclassification, 1xregression
Accelerometers, physiological signals

1. Dataset collection

(15"060:':)‘;%"““ D
Z2h of data 1
per person “”’"""""

Cvetkovic et al. (2017) Real-Time Activity Monitoring with a Wristband and a Smartphone, Information Fusion, In review. L\_ ‘
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Physical Activity Monitoring

Recognize what the person is doing and estimate its intensity

Supervised machine-learning technique | =
4 machine-learning tasks: 3xclassification, 1xregression
Accelerometers, physiological signals

Dataset collection
Preprocessing and feature extraction
3. Feature selection and training the models

Select model for current
device configuration
(15 models)

1

Energy
expenditure

Cvetkovic et al. (2017) Real-Time Activity Monitoring with a Wristband and a Smartphone, Information Fusion, In review. L\_ ‘
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Fvaluation
Walking and location recognition — 91%
Activity recognition — 8/% on average over all locations

walking
standing -

sitting -

’hysical Activity Monitoring

Recognize what the person is doing and estimate its intensity

Jacket + Wristband Bag + Wristband

running -

nordic

lying 1

cycling -

chores 1

Trousers + Wristband
walking | .
walking
scale (%) standing 7 scale (%) scale (%)
100 sitting 100 running 100
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S running - w
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Cvetkovic et al.

(2017) Real-Time Activity Monitoring with a Wristband and a Smartphone, Information Fusion, In review. L\_ ‘
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Physical Activity Monitoring
Recognize what the person is doing and estimate its intensity
-valuation — Estimation of energy expenditure

n MET: 0.64 MET over all locations
n kCal: error of 2 kCal (Bodymedia 4kCal, MS Band 22kCal)

Walking

Nordic

Uphill

Running

=% Microsoft

530

Lying Basic activites Eating Gardening Burden Cycling
100 200 300 400 500
Instance
Calorimeter Estimated ‘
Cvetkovic et al. (2017) Real-Time Activity Monitoring with a Wristband and a Smartphone, Information Fusion, In review.
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Mental Stress Monitoring
Detect and estimate the level of mental stress

Supervised machine-learning technique

2 classification machine-learning tasks 9 4{ Laborstory ]_,f Real e strss detect(:r\
Activity, its intensity, physiological signals e
1. Dataset collection Enerey (HET | iontexz.ﬁa;ed ~
Laboratory stress dataset \_ + —

People solving math problems under time pressure

Real-time stress dataset
People were labeling stressful events over period of two weeks

Gjoreski et al. (2016) Continuous stress detection using a wrist device: — In laboratory and real life. In: UbiComp Adjunct,. L\_ ‘
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Mental Stress Monitoring
Detect and estimate the level of mental stress

Supervised machine-learning technique

2 classification machine-learning tasks 9 4,[ _ Laborstory ]_.f Real lfe stress detector )
Activity, its intensity, physiological signals | predichons
: ctivi v
1. Dataset collection Eneray (MET | (Combased )
. . | stressdetector |
2. Preprocessing and feature extraction N i /

Blood volume pulse, heart rate, beat-to-beat

intervals, skin temperature and electrodermal
activity

Gjoreski et al. (2016) Continuous stress detection using a wrist device: — In laboratory and real life. In: UbiComp Adjunct,. L\_ ‘
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Mental Stress Monitoring
Detect and estimate the level of mental stress

Supervised machine-learning technique

2 classification machine-learning tasks 94{ Laboratory ]_’f Real lfe stress detector )
o . . . . . . stress detector p yy— \
Activity, its intensity, physiological signals | predictons
: ctivi v
1. Dataset collection Eneray (MET | (Combased )
) ) stress detector )
2. Preprocessing and feature extraction N i /

3. Algorithm design and training models

Gjoreski et al. (2016) Continuous stress detection using a wrist device: — In laboratory and real life. In: UbiComp Adjunct,. L\_ ‘
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Mental Stress Monitoring
Detect and estimate the level of mental stress

Evaluation
55 days of real-life data
- [2% without context and 92% with context

No Context With Context

NO STRESS STRESS NO STRESS STRESS

NO STRESS 638 175 790 23

STRESS 44 70 51 63

Gjoreski et al. (2016) Continuous stress detection using a wrist device: — In laboratory and real life. In: UbiComp Adjunct,. L\_ ‘
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-nvironment Monitoring
Detect low environment quality and recommend actions

Supervised machine-learning technique + ontology
1. Dataset collection + Expert knowledge

T year three offices

Ny il

Temperature - Summer
Temperature - Winter
Humidity

CO,
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Sensing

Hardware
Sensors

Virtual sensors

y

Simulator

Anticipatory
models

v
Q-rating

o Recommendation ‘
Freser, M. et al. (2016) Anticipatory system for T-H-C dynamics in room with real and virtual sensors. ACM UbiComp "16.
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Supervised machine-learning technique + ontology

-nvironment Monitoring
Detect low environment quality and recommend actions

1. Dataset collection + Expert knowledge
2. Preprocessing and feature extraction

3. Feature selection and training the models

Estimate
parameters which
cannot be sensed
directly

Anticipate
ACC (%) MAE RMSE dynamics of the
parameters
Window state 01
Number of occupants 0.6 1.2
Predict T ['C] 04 0.5
[%] 06 0.9 Environment Quality

Predict H
Predict CO2 [ppm] 55 104

2" Microsoft

Freser, M. et al. (2016) Anticipatory system for T-H-C dynamics in room with real and virtual sensors. ACM UbiComp "16.
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Increased from 60-75%
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Anticipatory system

Sensing

Hardware
Sensors
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"We are all special cases”
Albert Camus

N

KONFERENCA



Personalization

Adapt the model to the particular person

Supervised machine-learning
If we have labeled data of the person

| PD Dataset Train *
Instance Classified
to be classified ( PD model ) Instance

Bl .. Cvetkovic et al. (2016) Activity Recognition for Diabetic Patients Using a Smartphone. Journal of Medical Systems.
B Microsoft Reach us with #ntk17
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Personalization

Adapt the model to the particular person

Supervised machine-learning
If we have labeled data of the person ﬁ oo (e e

Semi-supervised machine-learning x— (%]—»( R
If we have some labeled data E;:;;‘;e@ R

Unsupervised machine-learning
If we have no labeled data

Cvetkovic et al. (2016) Activity Recognition for Diabetic Patients Using a Smartphone. Journal of Medical Systems. L\_ ‘
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Personalization

Unsupervised machine-learning technigue

Personalization of semantic location from WIFI and GPS traces
- Contexts: Time of day and day of the week
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Use cases — Lifestyle monitoring

Monitor
Physical activity, sleep, mental stress, environment

Recommend

Physical activities to reach daily goals (WHO recommendations)

Stress relief exercises (e.g., breathing)
Actions to improve the environment

Exercise Relax Trophies = Calendar

& § 0% ma(
A

fKAam@
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Use cases — Depression and Diabetes =
ﬂ

Anomaly in physical activity can be a sign of a depression ‘m ﬂ'
Blood glucose depends on the balance between food
intake and physical activity

1. We can use physical activity monitoring to estimate the
balance between the two

2. We can use physical activity monitoring as a machine-learning
feature for prediction and recognition of glycemias

Cvetkovic et al. (2016) Activity Recognition for Diabetic Patients Using a Smartphone. Journal of Medical Systems.
Cvetkovic et al. (2017) Predicting glycaemia in patients with diabetes using ECG and other wearable sensor data. Artificial Intelligence in Medicine L\‘_ ‘
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Detection and prediction of glycaemias

- Diabetes (I, II) patients

- They were equipped with smartphones and Zephyr bio-
harness (ECG, breathing rate), glucometer, blood
pressure monitor

Cvetkovic et al. (2017) Predicting glycaemia in patients with diabetes using ECG and other wearable sensor data. Artificial Intelligence in Medicine L\‘_ ‘
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Detection and prediction of glycaemias

- Data was divided in 5 minute segments 45 minutes before glucose
measurement

- 296 extracted featur § s (ECG, breath rate, activity, blood pressure, weight)
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Cvetkovic et al. (2017) Predicting glycaemia in patients with diabetes using ECG and other wearable sensor data. Artificial Intelligence in Medicine L\_ ‘
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Hospitalization prediction in CHF patients

141 CHF patients were equipped with telemonitoring devices
- Trial duration 369 + 134 days
- 9 hospitalizations suitable for analysis

- Because telemonitoring alone reduced hospitalizations by 70 %
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Hospitalization prediction in CHF patients

Data sample
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Cvetkovic et al. (2016) Hospitalisation prediction from telemonitoring data in congestive heart failure patients. JCAL. L\‘_ ‘
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Hospitalization prediction in CHF patients

168 features were extracted from raw data without and
with context (expert knowledge)

- Raw, statistical, demographical, discretized, ...

148 0.33 0.60

Random Forest 0.22 0.67 0.33 0.58
SVM 0.89 0.62 0.73 0.82
Naive Bayes 0.78 0.88 0.82 0.98

Cvetkovic et al. (2016) Hospitalisation prediction from telemonitoring data in congestive heart failure patients. JCAL. L\‘_ ‘
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Hospitalization prediction in CHF patients

Naive Bayes nomogram Non-hospitalisation

=% Microsoft

Hospitalisation

< ; >
|
|
Average HR High e $ Low
Average difference in BP High 4'—0 Low
Trend for difference in BP Down e o P
: Stable
1 Down
Trend for SYS_BP (90 days) Up e : ® bl
Trend for SYS_BP (30 days) Stable @ : o ngn
|
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|
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Cvetkovic et al. (2016) Hospitalisation prediction from telemonitoring data in congestive heart failure patients. JCAI L\‘_ ‘
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Hospitalization prediction in CHF patients

We thought the model was likely to overfit so we tested
on newly obtained data

o Non- o Non-
Hospitalized hospitalized s hospitalized
/ 2 7 2

Non-hospitalized 1 116 4 46

Hospitalized

Cvetkovic et al. (2016) Hospitalisation prediction from telemonitoring data in congestive heart failure patients. JCAL. L\‘_ ‘
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CHF detection from heart sound

Patient records the sound of heart and receives a feedback
weather it is healthy or not with accuracy 96%

- Seven stacked machine-learning models

Healthy Unhealthy

Gjoreski et al. (2017) Chronic Heart Failure Detection from Heart Sounds Using a Stack of Machine-Learning Classifiers, IE. L\‘_ ‘
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Unobtrusive diagnosis

Tricorder XPRIZE competition
Team from Slovenia was selected among top 10

UALCONV\A
rmconome XPRIZE

Diagnose 14 conditions:
Healthy, Hypertension, Atrial fibrillation, Acute

haemorrhagic stroke , Obstructive sleep apnoea, Otitis PROFIE )/ seNsOR 5 /' Poeson asour
media, Microcytic iron deficiency anaemia, (denfed /' (ecognzed A oy
Streptococcal pharyngitis, Lower urinary tract bacterial T
infection, COPD, Acute viral pneumonia, Leucocytosis, 11 conFIoNT
Tuberculosis, Hepatitis A, Diabetes type 2 2 wmae | Favomonac | [ conrr. [
p yp uﬁ:f?u > stﬂggrs ™ :;:"[‘)':?1';: ) PR[I:’EI;:E(?I'::;N DENT DlTGrzgtls
T ;’:RSf-mRMR)
Abdominal pain o P | | s
PAIN —» SYMPTOMS
F eV e r (user selected,
Somrak et al. (2015) Medical diagnostics based on combination of sensor and user-provided data, ECAL L\‘_ ‘
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Unobtrusive diagnosis
DEMO

UALCONV\A e
rmcorome XPRIZE

Somrak et al. (2015) Medical diagnostics based on combination of sensor and user-provided data, ECAL L\‘_ ‘
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..and...

Smartwatch with fall detection for elderly
Lyme borreliosis recognition from smartphone pictures

N
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Current challenges

-stimate blood pressure from wristband's PPG sensor
Decision support system tfor CHF physicians

Migraine prediction

COPD monitoring

Sleep analysis using wearable and ambient sensors
Monitor patients with neurodegenerative disease

N

| NWH
mn Microsoft Reach us with #ntk17 KONFERENCA




Conclusion

Trend of wearable sensors development is high and still increasing

Many challenging mHealth modules have been developed and even
implemented and validated in pilots

mHealth will soon be part of us either through mobile applications
or through health services

We are not trying to spy (on you), our research aims at helping (you) L\—‘—L
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