L7
SEPTEMBER

W\
2023 \HINF

PORTOROZ NT KONFERENCA

L\

A practical guide to

QI]“ authorization in
l ASP.NET Core

NT KONFERENCA

25 — 27 M. Eng. Raffaele Rialdi
SEPTEMBER @raffaeler - raffaeler@vevy.com
2023

PORTOROZ

The code for this talk is here:
https://github.com/raffaeler/authorization

BMicrosoft
RO Most valoable

Professional

Who am |?

e Raffaele Rialdi: @raffaeler also known as "Raf"
* Master degree in Electronic Engineering, University of Genoa (Italy)
* Teacher at the Informatics Engineering University of Genoa

e Consultant in many industries
 Manufacturing, racing, healthcare, financial, ...

e Speaker and Trainer around the globe (development and security)
* Italy, Romania, Slovenia, Bulgaria, Russia, USA, ...

* Proud member of the great Microsoft MVP family since 2003

ELETTRONICA
APPLICATA

Authentication and Authorization in .NET

e Authentication is the process of identifying a user or service
* This produces a token that is transformed in a ClaimsPrincipal

 ASP.NET 8 provides a new custom authentication flow
* It only targets SPAs to a its own backend

e Authorization determines whether the user can access a resource

* .NET provides three different strategies:
Role-based: the identity has been given or not a given role (Boolean)

2. Claim-based: the claim(s) values satisfy the requested condition
* Values can be Boolean, integer, string, other, including a complex JSON

3. Policy-based: a number of rules governing the access

ClaimsPrincipal and Claimsldentity

Properties

ClaimsPrincipal

Claims

Methods

-

Identities

Addldentities

Properties

Identity

Addldentity

Actor

Claimsldentity

Methods

Clone

AuthenticationType

AddClaim

FindAll

BootstrapContext

AddClaims

FindFirst

Claims

Clone

HasClaim

IsAuthenticated

FindAll

IsInRole

Label

FindFirst

WriteTo

Name

HasClaim

B Role-based authorization
B Claims-based authorization

NameClaimType

RemoveClaim

RoleClaimType

TryRemoveClaim

WriteTo

Tip #1: using IClaimsTransformation

* Claims are written in the token by the Identity Provider
e A few of them have standard names like name and email
* When using OIDC, there are functional claims like issuer, audience and scope

* .NET provides IClaimsTransformation to handcraft the principal

Task<ClaimsPrincipal> TransformAsync(ClaimsPrincipal principal);

* This method allows to add, remove or modify any Identity and its Claims

* The transformation service must be added in the DI:

services.AddSingleton<IClaimsTransformation, DemoClaimInjector>();

AuthorizeAttribute

[Authorize]
public class AssetlModel : PageModel
{
[AlLowAnonymous] public void OnGet() {}
¥

[Authorize(Roles="Administrators, Super")]
public class Asset2Model : PageModel {}

[Authorize(Policy = "SeniorTechStaff")]
public class AssetudModel : PageModel {}

[Authorize(AuthenticationSchemes =
JwtBearerDefaults.AuthenticationScheme)]

Requires authenticated access

Exception for the Get action

Role-based authentication

Policy-based authentication

Needed in Web APIs to prevent
redirection to the login page

Authorization Reqguirements

* It is a simple way to express the need for authorization checks
* The interface 1AuthorizationRequirement iS just an empty interface

* We have to implement the interface and optionally add properties:

public class TechStaffRequirement : IAuthorizationRequirement { }

* We then build a policy which may ask one or more requirements

* All the requirements required by a policy must succeed to provide access
* This translates in the AND conditions of all the requirements

authorizationOptions.AddPolicy(MyPolicies.TechStaff, builder =>
{ builder.Requirements.Add(new TechStaffRequirement()); });

Requirement handlers

* Requirements are verified by requirement handlers

* Each requirement may be satisfied by one or more handlers
* This translates in the OR condition of the handlers evaluating a requirement

public class DeveloperRequirementHandler : AuthorizationHandler<TechStaffRequirement>

{

protected override Task HandleRequirementAsync(
AuthorizationHandlerContext context, TechStaffRequirement requirement)

{ ...}

}
public class ItproRequirementHandler : AuthorizationHandler<TechStaffRequirement>
{

protected override Task HandleRequirementAsync(
AuthorizationHandlerContext context, TechStaffRequirement requirement)

{ ...}

Policies

options.AddPolicy(MyPolicies.SeniorTechStaff, builder =>

{
builder.Requirements.Add(new TechStaffRequirement());

builder.Requirements.Add(new SeniorRequirement(10));

3);

e Authorization policies are enforced with the [Authorization] attribute

[Authorize(Policy = MyPolicies.SeniorTechStaff)]

e or through an imperative demand

var check = await _authorizationService.AuthorizeAsync(
user:User,
resource: null,
requirement: new SportRequirement());
if(check.Succeeded) { ... }

|AuthorizationRequirementData in .NET 8

* Drastically reduce the code needed to authorize
* No need to create the policy or the explicit requirement class
* Just create the requirement handler and a custom attribute

* The custom attribute is the following:

public class AuthorizeJduniorsAttribute : AuthorizeAttribute,
TAuthorizationRequirement, IAuthorizationRequirementData
{

public AuthorizeJduniorsAttribute(int years) => Years = years;
public int Years { get; }
public IEnumerable<IAuthorizationRequirement> GetRequirements()

{
}

yield return this;

A first lap into the Authorization
features in .NET

Tips (slides or demos)

1. Microservices scenario

2. Scope in OIDC

Tip #2: microservices scenario 1/2

Browser Servicel Service2 Service3

* Each block is independently authenticated to an OIDC IP provider
* Browser is authenticated as the interactive user
* Servicel, 2, 3 have independent identities used to access local resources

* What if you need to provide audit/authorization in Service3 knowing
the exact full chain of all identities causing the call?
e Each service usually calls the next hop using a JWT

* You can manually add a X—WhateverYouWant attribute to the HTTP
request with the JWT that the service received from the caller

Tip #2: microservices scenario 2/2

Browser Servicel Service2 Service3
JWT-B JWT-1 JWT-2

JWT-B JWT-1
JWT-B

Add the Services.AddHttpContextAccessor() service in ASP.NET

Implement the IClaimsTransformation interface:
» Register the class in the DI as Scoped lifetime
* Request the IHttpContextAccessor from the DI in the constructor

. In Transformasync, read the JWTs from the HTTP headers
4.

For each JWT, add a new Claimsldentity to the ClaimsPrincipal

Tip #3: Using the scope in OIDC

* Scopes in OIDC determine which set of claims will appear in the token

* It is a convenient way to request on-demand a set of claims

e Scopes are a good way to avoid JWT being too powerful

* You can use different scopes in the same application to reduce the
impacts of a stolen JWT being used for administrative purposes

The Document management
project

Scenario

* A document Web API serving documents in CRUD style

* A React front-end performing the List and CRUD operations
* The Ul does NOT forbid actions to allow testing the backend authorizations

* The rules are quite simple:
* List permission allow to see the document properties only
* Read permission includes the document content

Update, Delete permissions are always granted to the document owner

Users can share CRUD access to other users for specific documents

Admins always have the full CRUD access

Implementing the scenario

° A single requirement: OperationAuthorizationRequirement
* Takes a string "action" specifying the action this requirement related to
* We have 5 possible actions: List, Read, Create, Update, Delete

* Three requirement handlers:

- DocumentOperationAuthorizationHandler is meant to control general access for
users (typically admin) who can always have one ore more LCRUD access

- AuthorAuthorizationHandler verifies that a specific document is owned by the
current user

- InvitedAuthorizationHandler verifies that the children share objects of a
specific document allow the current user to access the document for a
specific action (RUD)

datatracker.ietf.org/doc/html/rfc9470

Internet Engineering Task Force (IETF) - \/. Bertocci
Request for Comments: 9470 Auth@/0kta
Category: Standards Track B. Campbell
Published: |September 2023| Ping Identity

ISSN: 2070-1721

OAuth 2.0 Step Up Authentication Challenge Protocol

Step-up Authentication

Tip #3 Step-up in ASP.NET OIDC provider

* The IP Provider expect the parameter acr_values="mfa"

* |In ASP.NET use the event OpenldConnectEvents. OnRedirectToldentityProvider

OnRedirectToIdentityProvider = ctx =>

{
if (ctx.HttpContext.Items.TryGetValue("acr", out object value))
{
var acr = value as string ?? string.Empty; // "mfa"
ctx.ProtocolMessage.SetParameter("acr_values", acr);
}
return Task.CompletedTask;
b

* Any code setting HttpContext.ltems["acr"] and calling Challenge will redirect
the user to Keycloak asking the OTP code.

Takeaways

e Authorization should be designed as an Application-specific process
* Policies should be modeled appropriately and subject to unit-testing

* The test outcome should be part of the GDPR report

Conversation

user

- Create a picture of happy and smiling attendees in a conference room giving the
highest scores and cheering to the speaker

assistant

	Slide 1
	Slide 2
	Slide 4: Who am I?
	Slide 5: Authentication and Authorization in .NET
	Slide 6: ClaimsPrincipal and ClaimsIdentity
	Slide 7: Tip #1: using IClaimsTransformation
	Slide 8: AuthorizeAttribute
	Slide 9: Authorization Requirements
	Slide 10: Requirement handlers
	Slide 11: Policies
	Slide 12: IAuthorizationRequirementData in .NET 8
	Slide 13: A first lap into the Authorization features in .NET
	Slide 15: Tips (slides or demos)
	Slide 16: Tip #2: microservices scenario 1/2
	Slide 17: Tip #2: microservices scenario 2/2
	Slide 18: Tip #3: Using the scope in OIDC
	Slide 19: The Document management project
	Slide 20: Scenario
	Slide 21: Implementing the scenario
	Slide 22: Step-up Authentication
	Slide 23: Tip #3 Step-up in ASP.NET OIDC provider
	Slide 24: Takeaways
	Slide 25

