
#ntk18

Azure Functions with Durable

Functions Extension



#ntk18

Serverless & Microservices

 Serverless
 Abstraction (IAAS -> PAAS -> Serverless)

 scaling - event driven/instant scale

 billing

 Microservices
 loosely coupled, 

 collaborating services, 

 develop, test and deploy independently

https://cdn-images-1.medium.com/max/1600/1*-ls17P1mtg51h3gDAEonRw.png


#ntk18

Azure functions overview

 Runtime versions: 1.x - .NET Framework, 2.x .NET Core (pre-release)

 Billing -> consumption plan (gigabyte per second or # of executions) 

or AppService plan

 Scaling (scale controller) -> adding additional instances of function

host -> instance of function host is Function App -> all functions

within function app share resources within instance and scale at the

same time

 Difference WebJobs vs Azure Functions (automatic scaling, pay-per-

use)

https://docs.microsoft.com/en-us/azure/azure-functions/media/functions-scale/central-listener.png


#ntk18

Azure functions development

 Online development
 Now available templates for Durable functions

 Local development

 Azure functions core tools

 Visual Studio 2017

 Microsoft Azure Storage Emulator (local.appsettings.json)

 Azure Functions and WebJob Tools extension

 For Durable functions -> nuget Microsoft.Azure.Webjobs.Extensions.DurableTasks



#ntk18

Why use Durable Functions?

Simple workflow - as simple as it gets 

1.) WF within one function

2.) WF via messages

3.) WF via orchestrator function



#ntk18

Durable functions

• Azure Functions and the Durable Functions -> built on the WebJobs

SDK

• Orchestator f. (define wf in code, call other activity functions, 

manages state, checkpoint progress (await!!!) and restarts)

• Activity function



#ntk18

Durable functions

Tables – checkpointing execution history with event sourcing pattern -> 

Instances

History

Internal queue triggers for function invocation -> 

work item queue (activity f.)

control queues (orchestrator f.)

Task Hub -> logical container for Azure storage resources -> 

Orchestrator and activity functions can only interact with each other when they belong to the 

same task hub. Each function App has separate task hub. Storage account can have multiple 

task hubs.

https://docs.microsoft.com/en-us/azure/azure-functions/media/durable-functions-task-hubs/task-hubs-storage.png


#ntk18

Orchestrator function

HTTP API -> check progress, raise events, terminate

Error handling -> FunctionsFailedException, Automatic retry on failure

Timers -> delay, timeout

Diagnostics -> AppInsights, Logging, Custom Status, Debugging, Storage

Constraints non blocking, never initiate any async operation, infinite loops avoided (growing history) 

– ContinueAsNew method (orchestrator function history truncated)



#ntk18

Activity function

• Stateless

• The same behaviors as regular queue-triggered functions. 

• They can safely do I/O, execute CPU intensive operations, and use 

multiple threads. 

• Because activity triggers are stateless, they can freely scale out to an 

unbounded number of VMs.



#ntk18

Patterns

• Chaining

• Fan-Out/Fan-In

• Async HTTP APIs

• Monitoring

• Human Interaction



True/
False

Durable orchestrator function (EmailVerification)

Check if email
exist

ctx

Send email
challenge

ctx

Timeout
Timer

ctx
Wait For

External Event

ctx

winner

Activity function

Task

InsertEmail

Azure function

DurableOrchestrationClient

DurableOrchestrationContext

client

HttpTrigger
route=orchestrators/{fname}

StartNewAsync

Example

PIN = 
PINUser

Http req
payload:PinUser

PIN


