
Using Regular Expressions
More, um, Regularly

a "medium deep" dive

Presented by Mark Minasi

@minasi

1

Agenda

• Why regex?

• Basics: Literals and metacharacters

• Basic wildcards

• Engine internals: how regex
matches

• Greedy and lazy wildcards

• PowerShell's regex tools

• Character classes / class operations

• Anchors

• Groups

• Character class subtraction

2

What Can Regex Do for You?

• Very flexible text pattern match tool… when "-filter ADDC1*" won't do it

• The gateway to advanced pattern recognition ("is there PII in any of these files?")
or more exacting search-and-replace

• Simplifies input validation
• "Is that a valid email address?"
• "Does that desired new password meet our complexity requirements?"

• Extract text from even weakly structured folders of files

• Find and update text, like web sites

• Run it against a file of all words and become a crossword fiend

• Not just PowerShell… Server file classification, ASP.NET, VBScript all support it

• Imagine it for OneNote

• About as cross-platform a tool as you can find

3

Regex Weaknesses

• It's really weird looking, almost a "write-only" language sometimes

• It's not as hard as it's made out to be, but it is not trivial

• It's not a programming language – you can't write
procedures/functions in it, alias oft-used patterns and the like

• It parses well, but only to a point; it's lack of recursion means that
going after, say, XML would be difficult – it's just the wrong tool for
that

• (Another example: "is this word a palindrome?" using regex)

4

The World's Simplest Regexes
"Literals" and "Metacharacters"

• The regex pattern to match "be" is just those two letters – "be"

• "be" would first match
• To be or not to be
• Many consider Abe Lincoln the best President

• The letters in "be" are called literals (rather than metacharacters)

• Simplest metacharacter is . or "dot;" it matches any character other than a
line termination (usually… more on that later)

• "be." would match bee, bet, abet, antebellum, bear, etc

• "be." would not match just "be"

• BTW, to actually match "period," use \.

• Example: to match will.i.am, use will\.i\.am

5

Reference: The Other Metacharacters

• \ backslash, "escape"-ish

• ^ and $ are "anchors"

• | acts like "or"

• * means "repeat 0 or more times," + "repeat 1 or more times"

• (and) surround groups

• [] surround classes

• {} specify how many matches to expect

• We'll see more of them later

6

Basic Regex Pattern Testing: -Match

• To see that "But Be or not to be" can match the pattern "be," type

• "But Be or not to be" –match "be"

• Returns $True or $False

• The matched text is stored in $matches

• -Match only returns one match; better tools soon!

• PowerShell regex is by default case-insensitive, unlike most regexes
7

More on Dot

• In pattern b.e, "." only matches one character (albeit any character),
so it's not that "wild" as wild cards go

• So it'd match oboe or able, but not bone or be – there must be one
and only one character of some kind where the "." is,

• Suffix + to anything and it means "match this one or more times"
• So .+ is like the familiar "*"

• Suffix * to anything and it means "match this zero or more times"

• Thus, b.+e matches "Bayer" but not "burn" and not "be"

• (Why not "be?")

8

The Regex Engine
Yeah, we did some basics. Here's why.

9

Meet the Regex Engine
yes, we have to know this to use regex effectively

• So… regex matches patterns to text, and it seems intuitive…

• …. but sometimes it isn't

• Knowing how it works is really key to making regex useful

• And, truthfully, answering, "Why doesn't this stupid thing work?")

• Consider finding "be" in "But Be or not to be"

• Regex scans left to right (although it can be told to right-to-left)
looking for a match to the first token in the pattern, which is "b" in
our case

10

Matching "be" to "But Be or not to be"

• Start at position 1

• There's a B! We're matching!

• Next in pattern is "e…" next in
the string is "u." Dang. No
match. Increment the
"beginning of possible match"

• Position 2="u," no match w/"b"

• Position 3,4 no match

• Position 5=b, a match, we're
matching!

• Next in the pattern is "e," check
the string's next, and it's an e!
We're still matching!

• Check the next character in the
pattern, and… none left

• We matched at position 5 and 6!
• Search returns "true"

• $match = "be"

11

Note This Important Fact

• Big concept: regex always returns the leftmost answer, even if wasn't
the one we expected or wanted

• That was a test of "But Be or not to be"

• Now what happens if we match "But Beer or not to Be"…. What
matches?

• Yes, it's a trivial example but it points out that in "Beer or to Be," most
of us would see the final "Be" as somehow a better match

12

Engines Backtrack… Try b.+e against
"But Be or not to be"

• Again, "match pointer" starts at 1 –
a "b" – so we're matching!

• What does .+ match? Everything!
So the engine matches the rest of
the string… we're matching!

• So now, "b" matches "B" and .+
matches "ut Be or not to be"

• Ah, but the pattern's not done –
we got the b.+ but not the "e," as
we used up all of the letters with .+

• Curses! Foiled by a mite too much
matching

• In this situation, the engine
knows to "backtrack." It backs
up one position, and now .+
matches "ut Be or not to b" and
so we've consumed all but the
last letter, "e"

• The engine tries to match the
pattern's last token (e) to the
string's last token (e) and
success!!… it matched "But Be or
not to be" in its entirety

13

Greedy Versus Lazy

• Consider "berrr"
matched against b.*e – remember, * means zero or more

• (BTW, * and + are called "quantifiers" … we'll meet more)

• The obvious match is "be," but how many iterations would the engine need
to backtrack to that?

• Or maybe b.*e.*r … do THAT one on a blackboard. :)

• This is why regex processing times can get exponential

• This behavior of * or + to consume as much as possible and then only
backtrack when forced to is called "greedy"

• You can make any quantifier "lazy" by suffixing it with a question mark

• Our earlier pattern then becomes not b.+e but b.+?e

14

How the Engine Handles Lazy Quantifiers
"But Be or not to be" test matched to b.+?e

• As before, "match start pointer"
at 1 finds a b and we're
matching

• Next is .+? – "match any
character one or more times,
but be lazy doing it"

• Now .+? doesn't consume the
rest of the string, it just
consumes the first available
character… "u"

• "Match so far" is "bu"

• Check next token in the pattern,
which is "e"

• That fails so the engine
"backtracks and expands,"
matching .+? to "ut"

• That fails but ultimately it
expands to "ut B"

• Final pattern "e" matches

• Result: "But Be"

15

PowerShell and .NET's Regex
Tools
There's way more than –match, thankfully

16

The PowerShell Tools: String Operators

• The –match, -replace and –split operators take regex

• Of them, only -match populates $matches

• Try "This is a sentence" –split " " for example

• There is also –cmatch (it's case-insensitive by default), -notmatch,
creplace etc and the largely unnecessary –imatch, which forces case
insensitivity

17

Case Matching Example

18

The PowerShell Tools: [regex] Class

• PoSH's Regex is the .NET implementation and has an accelerator

• $myreg = [regex]'hel.'

• "Helo hela Held help" -match $myreg

• Reports "hela" match and "true"

• The Matches method is more powerful

• $matchups = $myreg.matches("helo hela helt help")

• That would return four matches… better than –match and $matches

• But the mext query only returns two; why?

• $matchups = $myreg.matches("Helo hela Helt help")

• Reason: .NET regex is case sensitive by default

19

Getting Multiple Matches w/.NET Regex

20

Getting Insensitive: Options and Mode Mods

• Two more ways to regain case insensitivity is via .NET regex options or
regex "mode modifiers"

• $regex = new-object regex('hel.', ([System.Text.RegularExpressions.
RegexOptions]::MultiLine,[System.Text.RegularExpressions.RegexOpti
ons]::IgnoreCase))

• Or prefix your pattern with "(?i)," a mode modifier:

• $myreg = [regex]'hel.'

• Becomes

• $myreg = [regex]'(?i)hel.'

• There are more mode modifiers, more later

21

Handling Timeouts: In Case You Meet …

• It's easy to accidentally create regexes that go on forever

• In .NET 4.5 and later, you can create a regex constructor with a timeout

• .NET needs the timeout built as a TimeSpan; example:

• $maxtime = new-timespan -seconds 1

• $myreg = New-Object -TypeName regex -ArgumentList 'A.',
([System.Text.RegularExpressions.RegexOptions]::MultiLine,[System.Text.Re
gularExpressions.RegexOptions]::IgnoreCase), $maxtime

• $matchups = $myreg.matches("Aces axis asking")

• BTW, on my Win 10 system it seems that all regex matches take at least
about 4.5 ms

22

PoSH's GREP: Select-String

• Input a file via –path or a text string via –inputobject

• Put the regex in –pattern

• Follow case with –CaseSensitive

• Only reports one match per line unless –allmatches

• Returned object contains filename, line number, line

• Does "match" only, no –replace or –split type options

• Example:

• Select-String –path c:\files*.txt –pattern "saw" -allmatches

23

Select-String Is the tool

• Again, returns all matches if you want

• Info returned includes
• Filename

• Line number of match

• Column of the match

• The exact text that matched

24

Sample Output

25

Dot-Weakness: Multi/Single Line

• The dot (.) matches everything but the line feed

• (Ancient historical reason – don't ask)

• You can turn on a mode to change that so all of the newline
characters match a dot

• "Single line mode" means "dot matches everything" and it's the .NET
"RegexOptions.Singleline" option and the (?s) mode modifier

• You'll want this when parsing things like an entire web page read into
a variable

• Select-String is great in that it generally elides this – no need to worry,
it takes care of it

26

Use Online Testers and Libraries

• Is this sounding scary?

• Save yourself time with some nice online testers
• Regexr.com

• Regex101.com

• http://regexhero.net/tester/ is great because it's built atop .NET regex, but
requires Silverlight, which a certain big company is killing for some reason

• There are also no end of sites with solutions to "how do I write a
regex that matches…" questions

• One example: http://www.regexlib.com

27

Regex Tools: Character Classes
Back to syntax for a bit

28

Character Classes for a Range of Values

• Literals are easy matches – 1 matches just an actual "1"

• But if we want to match any digit, we could create a "custom
character class" with a range, a set, or a combination of the two
• Ranges look like [0-9] which says, "we're happy if any of these match"

• "is th5ere a digit" –match "[0-9]"

• Note the square brackets on a custom class

• No escape needed to have "-" in a range, just make it unambiguous

• Sets look like [0123456789] … custom classes are satisfied by any member

• Or put them together: "is th5ere a digit" –match "[a-f567h-j]"

29

Regex Includes Some Predefined Classes

• [0-9] or [0123456789] works for digits, but there is a predefined class,
"\d" that does that job

• And \D, which means "everything but digits"

• \w is "all 'word' characters," a-z, A-Z, 0-9, _ in ANSI ;\W is, again,
everything but that

• \s is "white space," which means tab, line feed, vertical tab, form
feed, carriage return, space (ASCII 9-13, 20) but not "start of line"

• \S is anything that isn't white space

30

Mandatory Regex Example

• We must search for any US social security numbers (or things that
look like them) in a document or perhaps a folder full of files

31

Quantifiers: Beyond + and *

• Writing \d\d\d was irritating, so \d{3} works also, requiring exactly
three digits

• x{2,7} matches from two to seven consecutive x's

• x{5,} requires five or more consecutive x's

• Again, they must be consecutive; x{2} would not match Xerox

32

The "Optional" Quantifier, ?

• Suppose we wanted to match either "color" or "colour"

• Could * help, as in colou*r ?

• Yes, but it'd also match colouuuuuuuuur

• So we have "?," the "optional" quantifier

• "Groups" and "Alternation" could solve this also, we'll get to them later

• ? Means "0 or 1," as in colou?r

• You can use parens to make groups of more than one letter optional

• So this very simple example works: colo(u)?r

• (Blame it on Daniel Webster)

33

A "Negation" Character Class

• What if we don't want something?

• Again, there are the predefined "anything but" classes like \D, \W

• Alternatively, to negate a custom character class, put ^ as its first
token

• [^0-9] is the same as \D

• To match [^e], all a string must do is to have one or more characters
in it that are not "e"

34

Or to Tweak a Class: Class Subtraction

• Suppose we wanted to match a letter:

• [a-zA-Z]

• But didn't want r or w

• Use this:

• [a-z-[rw]]

PS C:\> "Row" -match "[a-z-[rw]]"

True

PS C:\> "wwr" -match "[a-z-[rw]]"

False

• You can also subtract inside subtracted classes, etc.

• If subtracting from a negated group, the negation happens first, then the subtraction

35

Quantifier Examples: Finding Weird Words

• Example: find a word with five consecutive vowels, given a file
crwords.txt with all English words:

• select-string -Pattern "[aeiou]{5}" -Path .\words.txt

• The character class is clearly vowels; the {5} says, "and exactly five of
them." Six consonants would be

• select-string -Pattern "[a-z-[aeiouy]]{6}" -Path .\words.txt

36

Regex Groups
Clarifying, Quantifying, Alternation, Capture

37

Groups

• "Groups" has a special meaning in Regex

• You "group" part of your regexes with parentheses

• Groups have several functions
• Sometimes they just clarify a regex visually

• Like character classes, they take quantifiers

• (a)(a)(a) is identical to (a){3}

• They allow you to mark some of the matched pattern to "capture" for re-use
later (for example, to find duplicate words or letters)

• They define an "alternation," covered next

38

Alternation

• [af] is a convenient way to say, "I'll accept a or f to match," but how to say,
"match either 'black' or 'white?'"

• With alternation, the pipeline symbol "|" as in

• (black | white)

• Note:
• [af] and (af) are essentially identical, but you can't put ranges inside groups, just classes

– "(a-z)" is a literal pattern a, -, z

• Either way, groups and custom classes create a "fork in the road" for the regex engine

• This offers us another answer to the color/colour problem:

• (colour|color)

• Be careful of the order of the options, though…

39

"More Specific to
the Left" Example

Also, even if your

options don't step on

each other, you can

make the regex faster

by putting the most-

likely options to the

left

40

Capture Groups

• Parentheses can also surround a subset of a group that you want not
just to match but pull out into regex variables

• They also show up in $matches or the Select-String variables

• Here, we just match "I saw a [whatever]," no capture:

41

Now Refine It with a Capture

42

Now just put parentheses around the word, and it captures it into $matches[1]

Naming Captured Groups

• The first captured group is sometimes referred to as $1 or \1

• The second is $2 or \2 and so on

• Note that $1 and $2 are not PowerShell variables; regex has used
those names for decades but PoSH gets confused, so surround them
with single quotes, like '$1'

• Let's see how to actually use this

• The classic example is "find any doubled words, like this:

43

Looking for Special Words

• Are there any words with the same letter three times in a row?

• This tells us:

• sls -path .\words.txt -Pattern "(\w)\1\1"

44

Anchors

45

Anchors Refine a Pattern

• When part of the pattern is "... But only at the end of the line" or something like
that, an anchor helps

• ^ matches "start of line, so ^hawk doesn't match "He was a deficit hawk" but
would match "Hawkman is a pretty lame DC character"

• (Yes, ^ means "set negation" also, but only in […] constructs)

• End of line anchor is $

• \b = "must begin on a word boundary"

• \B = "must not begin on a word boundary"

• \A = like ^ but only the beginning of the first line

• \Z = like $ but only at the end of the last line

• \z = like \Z but ignores carriage returns \r

• \G = must start immediately after the last match ended

46

Anchor Example

• Suppose I take my words.txt file and wonder if there's a word starting
with w and has two r's in it

• So I fire up Select-String and give it the pattern w.*r.*r.*

• Ooops… "Answerer" comes up

• So the better pattern is ^w.*r.*r.*

47

Multiline Mode

• Suppose you feed regex a string with newline characters

• Normally ^ means, "beginning of input string" and $ refers to the end
of the input string

• If you enable multiline mode, ^ also matches the beginning of each
line, and $ also matches the newline characters

• Turn it on as a regex option in a .NET new-object

• Or use the "m" mode modifier in your pattern… prefix the pattern
with "(?m)"

48

Thank You Very Much!

• I hope I inspired you to learn enough about regexes to put them to
work for you

• Remember:
• It's okay to cheat. There are lots of great examples on the web

• Use an online regex tester

• Select-String is the power tool for attacking folders full of files

• It only LOOKS weird… it is useful

• Thank you for attending, please don't forget to do an evaluation

• Have a safe trip home!

49

