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• Why regex?

• Basics: Literals and metacharacters

• Basic wildcards

• Engine internals: how regex 
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• PowerShell's regex tools

• Character classes / class operations

• Anchors

• Groups

• Character class subtraction
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What Can Regex Do for You?

• Very flexible text pattern match tool… when "-filter ADDC1*" won't do it

• The gateway to advanced pattern recognition ("is there PII in any of these files?") 
or more exacting search-and-replace

• Simplifies input validation
• "Is that a valid email address?"
• "Does that desired new password meet our complexity requirements?"

• Extract text from even weakly structured folders of files

• Find and update text, like web sites

• Run it against a file of all words and become a crossword fiend

• Not just PowerShell… Server file classification, ASP.NET, VBScript all support it

• Imagine it for OneNote

• About as cross-platform a tool as you can find
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Regex Weaknesses

• It's really weird looking, almost a "write-only" language sometimes

• It's not as hard as it's made out to be, but it is not trivial

• It's not a programming language – you can't write 
procedures/functions in it, alias oft-used patterns and the like

• It parses well, but only to a point; it's lack of recursion means that 
going after, say, XML would be difficult – it's just the wrong tool for 
that

• (Another example:  "is this word a palindrome?" using regex)
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The World's Simplest Regexes
"Literals" and "Metacharacters"

• The regex pattern to match "be" is just those two letters – "be"

• "be" would first match
• To be or not to be
• Many consider Abe Lincoln the best President

• The letters in "be" are called literals (rather than metacharacters)

• Simplest metacharacter is . or "dot;" it matches any character other than a 
line termination (usually… more on that later)

• "be." would match bee, bet, abet, antebellum, bear, etc

• "be." would not match just "be"

• BTW, to actually match "period," use \. 

• Example: to match will.i.am, use will\.i\.am

5



Reference:  The Other Metacharacters

• \ backslash, "escape"-ish

• ^ and $ are "anchors"

• | acts like "or"

• * means "repeat 0 or more times," + "repeat 1 or more times"

• ( and ) surround groups

• [] surround classes

• {} specify how many matches to expect

• We'll see more of them later
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Basic Regex Pattern Testing:  -Match

• To see that "But Be or not to be" can match the pattern "be," type

• "But Be or not to be" –match "be"

• Returns $True or $False

• The matched text is stored in $matches

• -Match only returns one match; better tools soon!

• PowerShell regex is by default case-insensitive, unlike most regexes
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More on Dot

• In pattern b.e, "." only matches one character (albeit any character), 
so it's not that "wild" as wild cards go

• So it'd match oboe or able, but not bone or be – there must be one 
and only one character of some kind where the "." is, 

• Suffix + to anything and it means "match this one or more times"
• So .+ is like the familiar "*"

• Suffix * to anything and it means "match this zero or more times"

• Thus, b.+e matches "Bayer" but not "burn" and not "be"

• (Why not "be?")
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The Regex Engine
Yeah, we did some basics.  Here's why.
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Meet the Regex Engine
yes, we have to know this to use regex effectively

• So… regex matches patterns to text, and it seems intuitive…

• …. but sometimes it isn't

• Knowing how it works is really key to making regex useful

• And, truthfully, answering, "Why doesn't this stupid thing work?")

• Consider finding "be" in "But Be or not to be"

• Regex scans left to right (although it can be told to right-to-left) 
looking for a match to the first token in the pattern, which is "b" in 
our case
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Matching "be" to "But Be or not to be"

• Start at position 1

• There's a B! We're matching!

• Next in pattern is "e…" next in 
the string is "u."  Dang. No 
match.  Increment the 
"beginning of possible match"

• Position 2="u," no match w/"b"

• Position 3,4 no match

• Position 5=b, a match, we're 
matching!

• Next in the pattern is "e," check 
the string's next, and it's an e!  
We're still matching!

• Check the next character in the 
pattern, and… none left

• We matched at position 5 and 6!
• Search returns "true"

• $match = "be"
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Note This Important Fact

• Big concept:  regex always returns the leftmost answer, even if wasn't 
the one we expected or wanted

• That was a test of "But Be or not to be"

• Now what happens if we match "But Beer or not to Be"…. What 
matches?

• Yes, it's a trivial example but it points out that in "Beer or to Be," most 
of us would see the final "Be" as somehow a better match
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Engines Backtrack… Try b.+e against
"But Be or not to be"

• Again, "match pointer" starts at 1 –
a "b" – so we're matching!

• What does .+ match?  Everything! 
So the engine matches the rest of 
the string… we're matching!

• So now, "b" matches "B" and .+ 
matches "ut Be or not to be"

• Ah, but the pattern's not done –
we got the b.+ but not the "e," as 
we used up all of the letters with .+

• Curses! Foiled by a mite too much 
matching

• In this situation, the engine 
knows to "backtrack."  It backs 
up one position, and now .+ 
matches "ut Be or not to b"  and 
so we've consumed all but the 
last letter, "e"

• The engine tries to match the 
pattern's last token (e) to the 
string's last token (e) and 
success!!… it matched "But Be or 
not to be" in its entirety
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Greedy Versus Lazy

• Consider "berrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr" 
matched against b.*e – remember, * means zero or more

• (BTW, * and + are called "quantifiers" … we'll meet more)

• The obvious match is "be," but how many iterations would the engine need 
to backtrack to that?

• Or maybe b.*e.*r … do THAT one on a blackboard.  :) 

• This is why regex processing times can get exponential

• This behavior of * or + to consume as much as possible and then only 
backtrack when forced to is called "greedy"

• You can make any quantifier "lazy" by suffixing it with a question mark

• Our earlier pattern then becomes not b.+e but b.+?e
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How the Engine Handles Lazy Quantifiers
"But Be or not to be" test matched to b.+?e

• As before, "match start pointer" 
at 1 finds a b and we're 
matching

• Next is .+? – "match any 
character one or more times, 
but be lazy doing it"

• Now .+? doesn't consume the 
rest of the string, it just 
consumes the first available 
character… "u"

• "Match so far" is "bu"

• Check next token in the pattern, 
which is "e"

• That fails so the engine 
"backtracks and expands," 
matching .+? to "ut"

• That fails but ultimately it 
expands to "ut B"

• Final pattern "e" matches

• Result: "But Be"
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PowerShell and .NET's Regex 
Tools
There's way more than –match, thankfully
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The PowerShell Tools: String Operators

• The –match, -replace and –split operators take regex

• Of them, only -match populates $matches 

• Try "This is a sentence" –split " " for example

• There is also –cmatch (it's case-insensitive by default), -notmatch, 
creplace etc and the largely unnecessary –imatch, which forces case 
insensitivity
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Case Matching Example
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The PowerShell Tools:  [regex] Class

• PoSH's Regex is the .NET implementation and has an accelerator

• $myreg = [regex]'hel.'

• "Helo hela Held help" -match $myreg

• Reports "hela" match and "true"

• The Matches method is more powerful

• $matchups = $myreg.matches("helo hela helt help")

• That would return four matches… better than –match and $matches

• But the mext query only returns two; why?

• $matchups = $myreg.matches("Helo hela Helt help")

• Reason:  .NET regex is case sensitive by default
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Getting Multiple Matches w/.NET Regex
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Getting Insensitive: Options and Mode Mods

• Two more ways to regain case insensitivity is via .NET regex options or 
regex "mode modifiers"

• $regex = new-object regex('hel.', ([System.Text.RegularExpressions. 
RegexOptions]::MultiLine,[System.Text.RegularExpressions.RegexOpti
ons]::IgnoreCase))

• Or prefix your pattern with "(?i)," a mode modifier:

• $myreg = [regex]'hel.'

• Becomes

• $myreg = [regex]'(?i)hel.'

• There are more mode modifiers, more later
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Handling Timeouts:  In Case You Meet      …

• It's easy to accidentally create regexes that go on forever

• In .NET 4.5 and later, you can create a regex constructor with a timeout

• .NET needs the timeout built as a TimeSpan; example:

• $maxtime = new-timespan -seconds 1

• $myreg = New-Object -TypeName regex -ArgumentList 'A.', 
([System.Text.RegularExpressions.RegexOptions]::MultiLine,[System.Text.Re
gularExpressions.RegexOptions]::IgnoreCase), $maxtime

• $matchups = $myreg.matches("Aces axis asking")

• BTW, on my Win 10 system it seems that all regex matches take at least 
about 4.5 ms
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PoSH's GREP: Select-String

• Input a file via –path or a text string via –inputobject

• Put the regex in –pattern

• Follow case with –CaseSensitive

• Only reports one match per line unless –allmatches

• Returned object contains filename, line number, line

• Does "match" only, no –replace or –split type options

• Example:

• Select-String –path c:\files\*.txt –pattern "saw" -allmatches
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Select-String Is the tool

• Again, returns all matches if you want

• Info returned includes
• Filename

• Line number of match

• Column of the match

• The exact text that matched
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Sample Output
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Dot-Weakness:  Multi/Single Line

• The dot (.) matches everything but the line feed

• (Ancient historical reason – don't ask)

• You can turn on a mode to change that so all of the newline 
characters match a dot

• "Single line mode" means "dot matches everything" and it's the .NET 
"RegexOptions.Singleline" option and the (?s) mode modifier

• You'll want this when parsing things like an entire web page read into 
a variable

• Select-String is great in that it generally elides this – no need to worry, 
it takes care of it
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Use Online Testers and Libraries

• Is this sounding scary?

• Save yourself time with some nice online testers
• Regexr.com

• Regex101.com

• http://regexhero.net/tester/ is great because it's built atop .NET regex, but 
requires Silverlight, which a certain big company is killing for some reason

• There are also no end of sites with solutions to "how do I write a 
regex that matches…" questions

• One example: http://www.regexlib.com
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Regex Tools: Character Classes
Back to syntax for a bit
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Character Classes for a Range of Values

• Literals are easy matches – 1 matches just an actual "1"

• But if we want to match any digit, we could create a "custom 
character class" with a range, a set, or a combination of the two
• Ranges look like [0-9] which says, "we're happy if any of these match"

• "is th5ere a digit" –match "[0-9]"

• Note the square brackets on a custom class

• No escape needed to have "-" in a range, just make it unambiguous

• Sets look like [0123456789] … custom classes are satisfied by any member

• Or put them together: "is th5ere a digit" –match "[a-f567h-j]"
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Regex Includes Some Predefined Classes

• [0-9] or [0123456789] works for digits, but there is a predefined class, 
"\d" that does that job

• And \D, which means "everything but digits"

• \w is "all 'word' characters," a-z, A-Z, 0-9, _ in ANSI ;\W is, again, 
everything but that

• \s is "white space," which means tab, line feed, vertical tab, form 
feed, carriage return, space (ASCII 9-13, 20) but not "start of line"

• \S is anything that isn't white space
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Mandatory Regex Example

• We must search for any US social security numbers (or things that 
look like them) in a document or perhaps a folder full of files
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Quantifiers: Beyond + and *

• Writing \d\d\d was irritating, so \d{3} works also, requiring exactly 
three digits

• x{2,7} matches from two to seven consecutive x's

• x{5,} requires five or more consecutive x's

• Again, they must be consecutive; x{2} would not match Xerox
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The "Optional" Quantifier, ?

• Suppose we wanted to match either "color" or "colour"

• Could * help, as in colou*r ?

• Yes, but it'd also match colouuuuuuuuur

• So we have "?," the "optional" quantifier

• "Groups" and "Alternation" could solve this also, we'll get to them later

• ? Means "0 or 1," as in colou?r

• You can use parens to make groups of more than one letter optional

• So this very simple example works:  colo(u)?r

• (Blame it on Daniel Webster)
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A "Negation" Character Class

• What if we don't want something?

• Again, there are the predefined "anything but" classes like \D, \W

• Alternatively, to negate a custom character class, put ^ as its first 
token 

• [^0-9] is the same as \D

• To match [^e], all a string must do is to have one or more characters 
in it that are not "e"
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Or to Tweak a Class: Class Subtraction

• Suppose we wanted to match a letter:

• [a-zA-Z]

• But didn't want r or w

• Use this:

• [a-z-[rw]]

PS C:\> "Row" -match "[a-z-[rw]]"

True

PS C:\> "wwr" -match "[a-z-[rw]]"

False

• You can also subtract inside subtracted classes, etc.

• If subtracting from a negated group, the negation happens first, then the subtraction
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Quantifier Examples:  Finding Weird Words

• Example: find a word with five consecutive vowels, given a file 
crwords.txt with all English words:

• select-string -Pattern "[aeiou]{5}" -Path .\words.txt

• The character class is clearly vowels; the {5} says, "and exactly five of 
them."  Six consonants would be

• select-string -Pattern "[a-z-[aeiouy]]{6}" -Path .\words.txt
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Regex Groups
Clarifying, Quantifying, Alternation, Capture
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Groups

• "Groups" has a special meaning in Regex

• You "group" part of your regexes with parentheses

• Groups have several functions
• Sometimes they just clarify a regex visually

• Like character classes, they take quantifiers

• (a)(a)(a) is identical to (a){3}

• They allow you to mark some of the matched pattern to "capture" for re-use 
later (for example, to find duplicate words or letters)

• They define an "alternation," covered next
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Alternation

• [af] is a convenient way to say, "I'll accept a or f to match," but how to say, 
"match either 'black' or 'white?'"

• With alternation, the pipeline symbol "|" as in 

• (black | white)

• Note:
• [af] and (af) are essentially identical, but you can't put ranges inside groups, just classes 

– "(a-z)" is a literal pattern a, -, z

• Either way, groups and custom classes create a "fork in the road" for the regex engine 

• This offers us another answer to the color/colour problem:

• (colour|color)

• Be careful of the order of the options, though…
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"More Specific to 
the Left" Example

Also, even if your 

options don't step on 

each other, you can 

make the regex faster 

by putting the most-

likely options to the 

left
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Capture Groups

• Parentheses can also surround a subset of a group that you want not 
just to match but pull out into regex variables

• They also show up in $matches or the Select-String variables

• Here, we just match "I saw a [whatever]," no capture:
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Now Refine It with a Capture
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Now just put parentheses around the word, and it captures it into $matches[1]



Naming Captured Groups

• The first captured group is sometimes referred to as $1 or \1

• The second is $2 or \2 and so on

• Note that $1 and $2 are not PowerShell variables; regex has used 
those names for decades but PoSH gets confused, so surround them 
with single quotes, like '$1'

• Let's see how to actually use this

• The classic example is "find any doubled words, like this:
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Looking for Special Words

• Are there any words with the same letter three times in a row?

• This tells us:

• sls -path .\words.txt -Pattern "(\w)\1\1"
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Anchors
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Anchors Refine a Pattern

• When part of the pattern is "... But only at the end of the line" or something like 
that, an anchor helps

• ^ matches "start of line, so ^hawk doesn't match "He was a deficit hawk"  but 
would match "Hawkman is a pretty lame DC character"

• (Yes, ^ means "set negation" also, but only in [ … ] constructs)

• End of line anchor is $

• \b = "must begin on a word boundary"

• \B = "must not begin on a word boundary"

• \A = like ^ but only the beginning of the first line

• \Z = like $ but only at the end of the last line

• \z = like \Z but ignores carriage returns \r

• \G = must start immediately after the last match ended
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Anchor Example

• Suppose I take my words.txt file and wonder if there's a word starting 
with w and has two r's in it

• So I fire up Select-String and give it the pattern w.*r.*r.*

• Ooops… "Answerer" comes up

• So the better pattern is ^w.*r.*r.*
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Multiline Mode

• Suppose you feed regex a string with newline characters

• Normally ^ means, "beginning of input string" and $ refers to the end 
of the input string

• If you enable multiline mode, ^ also matches the beginning of each 
line, and $ also matches the newline characters

• Turn it on as a regex option in a .NET new-object

• Or use the "m" mode modifier in your pattern… prefix the pattern 
with "(?m)"
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Thank You Very Much!

• I hope I inspired you to learn enough about regexes to put them to 
work for you

• Remember:
• It's okay to cheat.  There are lots of great examples on the web

• Use an online regex tester

• Select-String is the power tool for attacking folders full of files

• It only LOOKS weird… it is useful

• Thank you for attending, please don't forget to do an evaluation

• Have a safe trip home!
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