Using Regular Expressions
More, um, Regularly

a "medium deep" dive

Presented by Mark Minasi

@minasi

Agenda

Why regex?
Basics: Literals and metacharacters
Basic wildcards

Engine internals: how regex
matches

Greedy and lazy wildcards
PowerShell's regex tools

» Character classes / class operations
* Anchors

* Groups

* Character class subtraction

What Can Regex Do for You?

* Very flexible text pattern match tool... when "-filter ADDC1*" won't do it

* The gateway to advanced pattern recognition ("is there Pll in any of these files?")
or more exacting search-and-replace

* Simplifies input validation
e "Is that a valid email address?"
* "Does that desired new password meet our complexity requirements?"

Extract text from even weakly structured folders of files

Find and update text, like web sites

Run it against a file of all words and become a crossword fiend

Not just PowerShell... Server file classification, ASP.NET, VBScript all support it
Imagine it for OneNote

About as cross-platform a tool as you can find

Regex Weaknesses

* It's really weird looking, almost a "write-only" language sometimes
* |It's not as hard as it's made out to be, but it is not trivial

* It's not a programming language — you can't write
procedures/functions in it, alias oft-used patterns and the like

* It parses well, but only to a point; it's lack of recursion means that
going after, say, XML would be difficult —it's just the wrong tool for
that

* (Another example: "is this word a palindrome?" using regex)

The World's Simplest Regexes

"Literals" and "Metacharacters"

* The regex pattern to match "be" is just those two letters — "be"

* "be" would first match
* To be or not to be
* Many consider Abe Lincoln the best President

* The letters in "be" are called literals (rather than metacharacters)

* Simplest metacharacter is . or "dot;" it matches any character other than a
line termination (usually... more on that later)

"be." would match bee, bet, abet, antebellum, bear, etc

"be." would not match just "be"

BTW, to actually match "period," use \.

Example: to match will.i.am, use will\.i\.am

Reference: The Other Metacharacters

backslash, "escape"-ish

and S are "anchors"
acts like "or"

means "repeat 0 or more times," + "repeat 1 or more times"
and) surround groups

surround classes

specify how many matches to expect
 We'll see more of them later

Basic Regex Pattern Testing: -Match

* To see that "But Be or not to be" can match the pattern "be," type
e "But Be or not to be" —-match "be"

* Returns STrue or SFalse

* The matched text is stored in Smatches

e -Match only returns one match; better tools soon!

PS C:\scripts> "But Be or not to be" -match 'be' ; $matches
True

Name

0

* PowerShell regex is by default case-insensitive, unlike most regexes

More on Dot

* In pattern b.e, "." only matches one character (albeit any character),
so it's not that "wild" as wild cards go

e So it'd match oboe or able, but not bone or be — there must be one
and only one character of some kind where the "." is,

e Suffix + to anything and it means "match this one or more times"
* So .+ is like the familiar "*"

 Suffix * to anything and it means "match this zero or more times"
* Thus, b.+e matches "Bayer" but not "burn"” and not "be"
* (Why not "be?")

The Regex Engine

Yeah, we did some basics. Here's why.

Meet the Regex Engine

yes, we have to know this to use regex effectively

* So... regex matches patterns to text, and it seems intuitive...

* ... but sometimesitisn't

* Knowing how it works is really key to making regex useful

* And, truthfully, answering, "Why doesn't this stupid thing work?")
* Consider finding "be" in "But Be or not to be"

* Regex scans left to right (although it can be told to right-to-left)
looking for a match to the first token in the pattern, which is "b" in
our case

Matching "be" to "But Be or not to be"

e Start at position 1 * Next in the patternis "e," check
* There's a B! We're matching! the string's next, and it's an e!
* Next in patternis "e..." nextin We're still matching!
the string is "u." Dang. No e Check the next character in the
match. Increment the pattern, and... none left

"beginning of possible match" .
. - . *We matched at position 5 and 6!

* Position 2="u," no match w/"b N

e Search returns "true

* Position 3,4 no match « Smatch = "be"

e Position 5=b, a match, we're
matching!

Note This Important Fact

* Big concept: regex always returns the leftmost answer, even if wasn't
the one we expected or wanted

 That was a test of "But Be or not to be"

* Now what happens if we match "But Beer or not to Be".... What
matches?

* Yes, it's a trivial example but it points out that in "Beer or to Be," most
of us would see the final "Be" as somehow a better match

Engines Backtrack... Try b.+e against
"But Be or not to be"

* Again, "match pointer” startsat 1 -« |n this situation, the engine

a"b" —so we're matching! knows to "backtrack." It backs
* What does .+ match? Everything! up one position, and now .+
So the engine matches the rest of matches "ut Be or notto b" and

: ! =l
the Strm%",’, were ma,t,d?,mg' so we've consumed all but the
* So now, "b" matches "B" and .+ last letter, "e"

matches "ut Be or not to be"

« Ah, but the pattern's not done — * The engine tries to match the

we got the b.+ but not the "e," as pattern's last token (e) to the
we used up all of the letters with .+ string's last token (e) and
e Curses! Foiled by a mite too much success!l... it matched "But Be or

matching not to be" in its entirety

Greedy Versus Lazy

* Consider "berrr"
matched against b.*e —remember, * means zero or more

 (BTW, * and + are called "quantifiers" ... we'll meet more)

* The obvious match is "be," but how many iterations would the engine need
to backtrack to that?

* Or maybe b.*e.*r ... do THAT one on a blackboard. :)
* This is why regex processing times can get exponential

* This behavior of * or + to consume as much as possible and then only
backtrack when forced to is called "greedy"

* You can make any quantifier "lazy" by suffixing it with a question mark
* Our earlier pattern then becomes not b.+e but b.+?e

How the Engine Handles Lazy Quantifiers
"But Be or not to be" test matched to b.+?e

* As before, "match start pointer" ¢ "Match so far" is "bu"

at 1 finds a b and we're * Check next token in the pattern,
matching which is "e"

* Nextis .+? — "match any * That fails so the engine
character one or more times, backtracks and expands,

matching .+? to "ut"

* That fails but ultimately it
expands to "ut B"

* Final pattern "e" matches

but be lazy doing it"

* Now .+? doesn't consume the
rest of the string, it just

consumes the first available
character... "u" e Result: "But Be"

PowerShell and .NET's Regex
Tools

The PowerShell Tools: String Operators

* The —match, -replace and —split operators take regex
« Of them, only -match populates Smatches
* Try "This is a sentence" —split " " for example

* There is also —cmatch (it's case-insensitive by default), -notmatch,

creplace etc and the largely unnecessary —imatch, which forces case
insensitivity

Case Matching Example

PS C:\scripts> "Return soon"” -match
True

PS C:\scripts> "Return soon"” -cmatch
False

return”

e

return”

18

The PowerShell Tools: [regex] Class

PoSH's Regex is the .NET implementation and has an accelerator
Smyreg = [regex]'hel.’

"Helo hela Held help" -match Smyreg

Reports "hela" match and "true"

* The Matches method is more powerful

* Smatchups = Smyreg.matches("helo hela helt help")

* That would return four matches... better than —match and Smatches
* But the mext query only returns two; why?

* Smatchups = Smyreg.matches("Helo hela Helt help")

* Reason: .NET regex is case sensitive by default

Getting Multiple Matches w/.NET Regex

PS C:\scripts> $myreg = [regex] 'hel.’
PS C:\scripts> $matchups = $myreg.matches("helo hela helt help™)
PS C:\scripts> $matchups | format-table -auto

Groups Success Name Captures Index Length Vvalue

True 0
True 0
True 0

20

Getting Insensitive: Options and Mode Mods

* Two more ways to regain case insensitivity is via .NET regex options or
regex "mode modifiers"

* Sregex = new-object regex('hel.!, ([System.Text.RegularExpressions.
RegexOptions]::MultiLine,[System.Text.RegularExpressions.RegexOpti
ons]::lgnoreCase))

 Or prefix your pattern with "(?i)," a mode modifier:
* Smyreg = [regex]'hel.’

* Becomes

* Smyreg = [regex]'(?i)hel.’

 There are more mode modifiers, more later

Handling Timeouts: In Case You Meet ©0...

It's easy to accidentally create regexes that go on forever

In .NET 4.5 and later, you can create a regex constructor with a timeout
.NET needs the timeout built as a TimeSpan; example:

Smaxtime = new-timespan -seconds 1

* Smyreg = New-Object -TypeName regex -ArgumentList 'A.",
([System.Text.RegularExpressions.RegexOptions]::MultiLine,[System.Text.Re
gularExpressions.RegexOptions]::IgnoreCase), Smaxtime

* Smatchups = Smyreg.matches("Aces axis asking")

* BTW, on my Win 10 system it seems that all regex matches take at least
about 4.5 ms

PoSH's GREP: Select-String

* Input a file via —path or a text string via —inputobject

e Put the regex in —pattern

* Follow case with —CaseSensitive

* Only reports one match per line unless —allmatches

* Returned object contains filename, line number, line

* Does "match" only, no —replace or —split type options

* Example:

* Select-String —path c:\files*.txt —pattern "saw" -allmatches

Select-String Is the tool

* Again, returns all matches if you want

* Info returned includes
* Filename
* Line number of match
e Column of the match
* The exact text that matched

Sample Output

5ele:t—string -Path CA\Seripts\Testreps®.txt

-pattern "saw” -AllMatches | ogv

Filter

&= Add cntena ™

IgnoreCase | LineMumber | Line Flename Path Pattern | Context | Matches
- 1 W testrepstt CA\Scripts\testrepstt saw P—
True 2 | saw a plane testreps.ict CAScripts\testreps.idt saw {saw}
True 3 | wish | saw a flower testreps.ict CAScripts\testreps.idt saw {saw}
True 1 | used a saw to cut down a tree testreps2.bdd CA\Scnpisitestreps2.bd saw {saw}
True 3 Saw a sawal cat testreps2.txt CAScripts\testreps2bit saw {Saw, saw}]
: True 5 The wood appeared to have... testreps2itxt CAScnpts\testreps2.bit saw {saw}

25

Dot-Weakness: Multi/Single Line

* The dot (.) matches everything but the line feed
 (Ancient historical reason — don't ask)

* You can turn on a mode to change that so all of the newline
characters match a dot

e "Single line mode" means "dot matches everything" and it's the .NET
"RegexOptions.Singleline" option and the (?s) mode modifier

* You'll want this when parsing things like an entire web page read into
a variable

 Select-String is great in that it generally elides this — no need to worry,
it takes care of it

Use Online Testers and Libraries

* |s this sounding scary?

 Save yourself time with some nice online testers

* Regexr.com
* Regex101l.com

* http://regexhero.net/tester/ is great because it's built atop .NET regex, but
requires Silverlight, which a certain big company is killing for some reason

* There are also no end of sites with solutions to "how do | write a
regex that matches..." questions

* One example: http://www.regexlib.com

Regex Tools: Character Classes

Character Classes for a Range of Values

e Literals are easy matches — 1 matches just an actual "1"

e But if we want to match any digit, we could create a "custom
character class" with a range, a set, or a combination of the two
* Ranges look like which says, "we're happy if any of these match"
"is th5ere a digit" —match "[0-9]"
Note the square brackets on a custom class
No escape needed to have "-" in a range, just make it unambiguous
Sets look like ... custom classes are satisfied by any member
Or put them together: "is th5ere a digit" —match "[a-f567h-j]"

Regex Includes Some Predefined Classes

* [0-9] or [0123456789] works for digits, but there is a predefined class,
"\d" that does that job

* And \D, which means "everything but digits"

* \w is "all 'word' characters," a-z, A-Z, 0-9, _in ANSI ;\W is, again,
everything but that

* \s is "white space," which means tab, line feed, vertical tab, form
feed, carriage return, space (ASCIl 9-13, 20) but not "start of line"

* \S is anything that isn't white space

Mandatory Regex Example

* We must search for any US social security numbers (or things that
look like them) in a document or perhaps a folder full of files

PS C:\scripts> $s="My ID is 481-12-9256"
PS C:\scripts> $s -match "\d\d\d-\d\d-\d\d\d\d"

PS C:\scripts> $matches

481-12-9256

31

Quantifiers: Beyond + and *

» Writing \d\d\d was irritating, so \d{3} works also, requiring exactly
three digits

* x{2,7} matches from two to seven consecutive x's
* x{5,} requires five or more consecutive x's
* Again, they must be consecutive; x{2} would not match Xerox

The "Optional” Quantifier, ?

* Suppose we wanted to match either "color" or "colour"

e Could * help, as in ?

* Yes, but it'd also match colouuuuuuuuur

* So we have "?," the "optional" quantifier

* "Groups" and "Alternation" could solve this also, we'll get to them later
e ? Means "Oor 1," as in colou?r

* You can use parens to make groups of more than one letter optional

* So this very simple example works: colo(u)?r

* (Blame it on Daniel Webster)

A "Negation" Character Class

* What if we don't want something?
* Again, there are the predefined "anything but" classes like \D, \W

 Alternatively, to negate a custom character class, put » as its first
token

* [20-9] is the same as \D

* To match [*e], all a string must do is to have one or more characters
in it that are not "e"

Or to Tweak a Class: Class Subtraction

Suppose we wanted to match a letter:

[a-zA-Z]

But didn't want r or w

Use this:

* [a-z-[rw]]

PS C:\> "Row" -match "[a-z-[rw]]"
True

PS C:\> "wwr" -match "[a-z-[rw]]"
False

* You can also subtract inside subtracted classes, etc.
* If subtracting from a negated group, the negation happens first, then the subtraction

Quantifier Examples: Finding Weird Words

* Example: find a word with five consecutive vowels, given a file
crwords.txt with all English words:

* select-string -Pattern "[aeiou]{5}" -Path .\words.txt

* The character class is clearly vowels; the {5} says, "and exactly five of
them." Six consonants would be

* select-string -Pattern "[a-z-[aeiouy]]{6}" -Path .\words.txt

Regex Groups

Clarifying, Quantifying, Alternation, Capture

37

Groups

* "Groups" has a special meaning in Regex
* You "group" part of your regexes with parentheses

* Groups have several functions
* Sometimes they just clarify a regex visually
* Like character classes, they take quantifiers
* (a)(a)(a) is identical to (a){3}
* They allow you to mark some of the matched pattern to "capture" for re-use
later (for example, to find duplicate words or letters)

* They define an "alternation," covered next

Alternation

* [af] is a convenient way to say, "I'll accept a or f to match," but how to say,
"match either 'black' or 'white?""

* With alternation, the pipeline symbol "|" as in
 (black | white)

* Note:

 [af] and (af) are essentially identical, but you can't put ranges inside groups, just classes
—"(a-z)" is a literal pattern a, -, z

* Either way, groups and custom classes create a "fork in the road" for the regex engine
* This offers us another answer to the color/colour problem:
* (colour|color)
* Be careful of the order of the options, though...

EN Special Minasi Admin Window

$p = "(sparrow|sparrowhawk)"
"I saw a sparrowhawk" -match $p

$matches

sparrow
sparrow

$p = "(sparrowhawk |sparrow)"
"I saw a sparrowhawk" -match $p

$matches

sparrowhawk
sparrowhawk

"I saw a sparrow” -match $p

$matches

sparrow
sparrow

"More Specific to
the Left" Example

Also, even if your
options don't step on
each other, you can
make the regex faster
by putting the most-
likely options to the
left

40

Capture Groups

e Parentheses can also surround a subset of a group that you want not
just to match but pull out into regex variables

* They also show up in Smatches or the Select-String variables
* Here, we just match "I saw a [whatever]," no capture:

PS C:\> $p="I saw a \w+"

PS C:\> "I saw a ball today" -match $p
True

PS C:\> $matches

41

I saw a ball

Now Refine It with a Capture

Now just put parentheses around the word, and it captures it into Smatches[1]

$p="I saw a (\w+)"
"I saw a ball today" -match $p

$matches

I saw a ball

Naming Captured Groups

* The first captured group is sometimes referred to as $S1 or \1

* The second is S2 or \2 and so on

* Note that $S1 and S2 are not PowerShell variables; regex has used
those names for decades but PoSH gets confused, so surround them

with single quotes, like 'S1'
* Let's see how to actually use this
* The classic example is "find any doubled words, like this:

PS C:\>
PS C:\> "I am am here." -match "(\w+) \1"

True
PS C:\>

43

Looking for Special Words

* Are there any words with the same letter three times in a row?

 This tells us:
* sls -path .\words.txt -Pattern "(\w)\1\1"

Anchors

Anchors Refine a Pattern

When part of the pattern is "... But only at the end of the line" or something like
that, an anchor helps

N matches "start of line, so *hawk doesn't match "He was a deficit hawk" but
would match "Hawkman is a pretty lame DC character”

(Yes, » means "set negation" also, but only in [...] constructs)
End of line anchoris S

* \b = "must begin on a word boundary"

* \B = "must not begin on a word boundary"

* \A = like ” but only the beginning of the first line

* \Z = like S but only at the end of the last line

* \z = like \Z but ignores carriage returns \r

* \G = must start immediately after the last match ended

Anchor Example

* Suppose | take my words.txt file and wonder if there's a word starting
with w and hastwo r'sin it

* So | fire up Select-String and give it the pattern w.*r.*r.*
* Ooops... "Answerer" comes up
* So the better pattern is Aw.*r.*r.*

Multiline Mode

* Suppose you feed regex a string with newline characters

* Normally » means, "beginning of input string" and S refers to the end
of the input string

* If you enable multiline mode, » also matches the beginning of each
line, and S also matches the newline characters

* Turn it on as a regex option in a .NET new-object

* Or use the "m" mode modifier in your pattern... prefix the pattern
with "(?m)"

Thank You Very Much!

* | hope | inspired you to learn enough about regexes to put them to
work for you
* Remember:

* It's okay to cheat. There are lots of great examples on the web
* Use an online regex tester

» Select-String is the power tool for attacking folders full of files
* It only LOOKS weird... it is useful

* Thank you for attending, please don't forget to do an evaluation
* Have a safe trip home!

