L \I_ I—L BE Microsoft

KONFERENCA

. . N
Agile Testing v2.0 —
Testing in the DevOps World * o
Ana Roje Ivandi¢, VS ALM MVP N J
Ognjen Baji¢, VS ALM MVP —

Ekobit

Speakers

Working with VS ALM tools since 2004.
WinDays 2005 preconf day on VSTS

Worked as Dev, PM, Test, RM, SM, PQO...

VS ALM MVPs

" Microsoft

Agenda

DevOps World and Quality

Transform Engineering for Quality, Speed and Throughput
Continuous Acceptance Testing

Continuous Delivery and Quality
Shift Left — Bring Quality related info in the Developer inner loop
Shift Right — Testing in production

" Microsoft L\I—LL

NNNNNNNNNN
Reach us with #ntk17

DevOps World and Quality

Conventional QA in the Modern App Lifecycle

[] = @
Document requirements . Requirements
www asBRDsand [Define

. : —
Nel[Vjife]p functional specs | |qeation I
managers " O oS rate

Develop Monitor
|dea to working
software

erte COde tO Operations

Lk

Developers

implement
requirements

% Operations
readiness
verification

[] = @
UAT Pre-deployment
post implementation w w w vepriﬂiation
and systems testing

o o o
www Testing post implementation.

Mostly manual with limited
automation.

Software Operations

Testers

Late engagement | Late detection | Increased | Increased
of stakeholder functions | of unmet requirements | cycletimes | costs
Reach us with #ntk17

Conventional QA and Quality

Complete -
g 5

\ s \
7 \ ’ S
,z \\ ,/ \\
Code Test & Stab|l|ze Code Test & Stab|l|ze

== Microsoft L\I—‘—L

KONFERENCA
Reach us with #ntk17

Transtform Engineering for Quality, Speed and Throughput

Multi-year cycles — Cloud cadence
Deliver continuously or after every 2-3 week sprint
Automated Delivery Pipeline
Ability to deliver on a push of a button - easily, quickly and frequently

Execute automated tests in all phases of the pipeline
Unit tests during the Build

Functional (acceptance) tests as part of the delivery in different environments
Performance, load, usability and other tests

B8 Microsoft L\I—LL

NNNNNNNNNN
Reach us with #ntk17

Transtform Engineering for Quality, Speed and Throughput

Insist on Automated Tests
Manual testing doesn't scale
Can't have long-term control of quality with manual testing only

Acceptance tests

Definition of Ready: Included in the requirements definition

Befinition of Done: Feature is Done when its automated acceptance tests are
one

Complement automated tests with manual testing

No more Dev and QA — Everyone is an Engineer
Everybody writes production code and code for tests

Don't accept test failures — Insist on reliability and speed
Treat test code and test infrastructure as production
Only reliable tests and test infrastructure should survive

== Microsoft L\I—‘—L

NNNNNNNNNN
Reach us with #ntk17

Quality After — With Transformed Engineering

Bug count
P 20K Y 20k ST 2nl B Aat G Ao G Aal P Al U el U Al U 208 I% ant G Aol Ui Aol S el U 2o ? NS

B8 Microsoft L\I—LL

NNNNNNNNNN

Appropriate For Any Type Of Project/Product

Optimized for Web - Live site

Works perfectly for classic boxed products as well
Automated ,Check for update”

Necessary for sustainable support and future development

But we don't have any tests! Initial effort is too big!
Start small
Cover key scenarios with automated functional tests and use them as smoke tests
Integrate smoke tests in the release pipeline
Automate acceptance tests for newly developed features
At least for the key scenarios

Embrace Acceptance Test Driven Development as long term strategy
B8 Microsoft Lﬁ—,{l\

Ko
Reach us with #ntk17

Acceptance Test Driven Development

Quality enablement practices for continuous value delivery

. Requirements
Acceptance test planning Define E— — Integrated incident management
Ideation [

Develop ¥ impement | Operate

. mpiemen Team Monitor Working software to
I2iEA) WA e Continuous quality business outcomes
software

Shortened cycle times

Continuous acceptance testing Testing in production

Team integration | Early detection of unmet requirements | Shortened cycle times | Reduced costs

Delivery Pipeline And Testing
Demo

Continuous Delivery and Quality

A Traditional Look At DevOps

Continuous
integration

C—
= = il

Code editing Debugging

(D405

Unit testing Code analysis Source control

public §
Task<ir§
{int x = awra d

deployment

IS

Development flows left to right and repeats

Continuous Analytics

=

We Can Do Better Than Traditional DevOps!

Code editing Debugging Unit testing Code analysis Source control Continuous Continuous Analytics
integration deployment

publc C— E
G @ GO0 = 1 fithir— > 1F

Tighten the cycle
Catch issues before check-in

[dentify issues in production

“Shift Left”

Code editing Debugging Unit testing Code analysis Source control Continuous Continuous Analytics
integration deployment

publici 1 E
?LEI @ 08 : fii— > &

]

‘ Continuous integration + real-time experiences = shift left

~

“Shi

Code editing

- |Lef

Debugging

I/l

Unit testing

Code analysis

Source control

Continuous
integration

Continuous
deployment

Analytics

“Shift Left”

Code editing Debugging Unit testing Code analysis Source control Continuous Continuous Analytics

integration deployment
A

public {) —
TTTTT i o —
{intx = awra ? | | _@_

]

Fdit and Continue — Pulled debugging into the edit/build cycle

~

“Shi

Code editing

- |Lef

Debugging

I/l

Unit testing

Code analysis

Source control

Continuous
integration

Continuous
deployment

Analytics

“Shift Left”

Code editing Debugging Unit testing Code analysis Source control Continuous Continuous Analytics

integration deployment
i e @ pUbIIC @ E ...—
<> S it Q (O

]

Live Unit Testing — Pulls guality further into the inner loop

~

“Shi

Code editing

- |Lef

Debugging

I/l

Unit testing

Code analysis

Source control

Continuous
integration

Continuous
deployment

Analytics

~

“Shi

Code editing

- Left”

Debugging Unit testing Code analysis Source control Continuous Continuous
integration deployment

i<

Hi

Live Code Analysis — Immediate feedback loop

Analytics

=

~

“Shi

Code editing

- |Lef

Debugging

I/l

Unit testing

Code analysis

Source control

Continuous
integration

Continuous
deployment

Analytics

"Shift Left”

Code editing Debugging Unit testing Code analysis Source control Continuous Continuous Analytics
integration deployment

i< GE

Unit Tests in automated Build — Immediate feedback loop

~

“Shi

Code editing

- |Lef

Debugging

I/l

Unit testing

Code analysis

Source control

Continuous
integration

Continuous
deployment

Analytics

"Shift Left”

Code editing Debugging Unit testing Code analysis Source control Continuous Continuous Analytics
integration deployment

=

Acceptance Tests in delivery pipeline — Immediate feedback loop

Best Practice — Test Shift Left

Test early — more unit test like, less Ul based tests

Replace Ul based functional tests with unit test based (functional and
Integration) tests

Replace fragile Ul tests with fast and robust (unit) tests
Usually requires refactoring of the architecture

Tests become significantly faster and more reliable

Bugs are found earlier in the cycle

Developers get quick feedback on their commit, which further reduces
context switching

== Microsoft L\I—‘—L

NNNNNNNNNN
Reach us with #ntk17

Case Study - Changing the test portfolio balance

old
Test Portfolio

N e

MS.TFTest.TRA

Old Test Framework

»

Future
Test Portfolio

L1
o
- MS. MS MS.
VSS. VSS VSS
Test. Test Test.

Future Test Framework

Principles
Tests should be written at the
lowest level possible

Write once, run anywhere
including production system

Product is designed for testability

Test code is product code, only
reliable tests survive

LO: Run against raw drop. Only access binaries. Run in the build. Must be fast and reliable.

L7: Run against raw drop. Can hit resources on a machine (eg. SQL test)

L2: Run against ,special” deployed product.
B Microsoft L3- Run against production

N T

KONFERENCA
Reach us with #ntk17

Case Study - Changing the test portfolio balance

VSTS Test Portfolio Balance
35000

30000
25000
20000

.|||l|I.|I.‘I.II.|I.LLL‘lllllhlll”“

M78 M79 M80 M81T M82 M83 M84 M85 M86 M87 M88 M89 M990 MIT M92 MI93 M95 M98 M101T M102 M103 M104 M105 M106 M107
WO Tests 2723 3744 4582 5297 5381 5831 6613 6684 7232 7668 7983 8486 8908 9385 9385 10286 15968 18598 23272 24945 26594 27109 27807 28709 29787
W L1 Tests 888 958 2130 2241 2525 3095 3753 4046 4215 3723 3786 3786 4166 479 1153 1465 1774 2177 2289 2438 2597 2735
W2 Tests 430 590 652 969 1082 1170 1382
B TRA Tests 27054 24941 24135 24097 24381 25212 22198 21981 21908 19577 19529 19124 19098 19041 19041 18937 18749 18252 14983 12449 11959 10554 10070 9686 7500

LO: Run against raw drop. Only access binaries. Run in the build. Must be fast and reliable.
L7: Run against raw drop. Can hit resources on a machine (e.g. SQL test)

L2: Run against ,special” deployed product. L l u_L

Number of tests

) L3: Run against production
" Microsoft

KONFERENCA
Reach us with #ntk17

Demo
Live Unit lesting

Shift Right —
Testing In Production

"Shift Left” vs. “Shift Right”

Debugging Unit testing Code analysis Source control Continuous Continuous Analytics

integration deployment
public —
G @ =2 fitht— > 1E

Hi

‘ Continuous Integration + Real-time experiences = Shift Left

Continuous data mining + Near real-time data = Shift Right »

Shift Right — Test in Production

Leverage end users as scalable manual testers
Production is the best place to look for certain types of issues

Control exposure of features to users

For web/cloud apps use multiple rings of production environments
Use Feature flags

Monitor metrics and act on irreqularities
Proactively react, fix problems, redeploy

B8 Microsoft L\I—LL

NNNNNNNNNN
Reach us with #ntk17

Rings of Production Environments

Attach different sets of users
to different environments

° ° II ° II ° Day/

Wait certain “bake time' in AN
. Bln Full Full Hot Hot Hot Hot Hot Hot

each environment before G L5 P |me e |

deploying into the next ::;“ Ei’t N

Afa|ure |n an en\/|r0nmeﬂt Hot Hot Hot Hot Hot Hot Full Hot

Fix Fix Fix Fix Fix Fix Fix
StOpS the depk)ymeﬂt S Hot Hot Hot Hot Hot Hot Hot Hot Ful

Fix Fix Fix Fix Fix Fix Fix Fix

Provides a way to contain
regressions in new Dits

== Microsoft L\]—

NNNNNNNNNN
Reach us with #ntk17

Feature Flags

Decouple deployment of features from their exposure to end-users

All done code is deployed, but feature flags control exposure

Granular control of user exposure to features down to an individual user
Combined best with multiple rings of production environments

Users can be added or removed with no redeployment

Turned off quickly

Enable progressive experimentation & refinement

Support early feedback
Decouple engineering and marketing
Enables ,dark launch” of features

Note! Avoid using feature flags for dark delivery of unfinished code
Prefer delivering more granular features in done state

N

== Microsoft
KO
Reach us with #ntk17

Feature Flags
Given some existing

code path

ON
H

H
OFF

When it's ready, the

new code pat
£napbled

me Micro

N 1S

ntroduce a new code
nath that is disabled...

More code
gets written...

Once we're done,
the flag is deleted

NNNNNNNNNN

Measure everything — gather every possible metrics

Monitor for irregularities and react proactively

B8 Microsoft

BENgleleEIfe DevOps Debug Experiments

o1 M v

Activity Traces KPI Job Customer Svnthetic Perf
Logging I I Metrics | History |Inte||igence| y I Counters

o FE LS E'

Operational Intelligence Business Intelligence Customer Intelligence

NNNNNNNNNN
Reach us with #ntk17

Feature Flags
Demo

Agile Testing v2.0 — Testing in the DevOps World
Transtorm Engineering-Quality, Speed and Throughput

Fast release cadence

Automated Delivery Pipeline

Automated Testing complemented with Manual testing

Everybody writes production and test code

Continuous Acceptance testing in every part of the delivery pipeline

Replace Ul functional tests with unit test based (functional and integration) tests

Shift Left — Test results available in dev tools in real time
Continuous integration + real-time experiences
Shift Right — Testing in production

Continuous data mining + near real-time data testing in production

" Microsoft L\I—LL

NNNNNNNNNN
Reach us with #ntk17

Thank you!

Questions?
obajic @ ekobit.hr

aroje @ ekobit.hr

